The Oligomycin-Sensitivity Conferring Protein of Mitochondrial ATP Synthase: Emerging New Roles in Mitochondrial Pathophysiology

نویسندگان

  • Manuela Antoniel
  • Valentina Giorgio
  • Federico Fogolari
  • Gary D. Glick
  • Paolo Bernardi
  • Giovanna Lippe
چکیده

The oligomycin-sensitivity conferring protein (OSCP) of the mitochondrial F(O)F1 ATP synthase has long been recognized to be essential for the coupling of proton transport to ATP synthesis. Located on top of the catalytic F1 sector, it makes stable contacts with both F1 and the peripheral stalk, ensuring the structural and functional coupling between F(O) and F1, which is disrupted by the antibiotic, oligomycin. Recent data have established that OSCP is the binding target of cyclophilin (CyP) D, a well-characterized inducer of the mitochondrial permeability transition pore (PTP), whose opening can precipitate cell death. CyPD binding affects ATP synthase activity, and most importantly, it decreases the threshold matrix Ca²⁺ required for PTP opening, in striking analogy with benzodiazepine 423, an apoptosis-inducing agent that also binds OSCP. These findings are consistent with the demonstration that dimers of ATP synthase generate Ca²⁺-dependent currents with features indistinguishable from those of the PTP and suggest that ATP synthase is directly involved in PTP formation, although the underlying mechanism remains to be established. In this scenario, OSCP appears to play a fundamental role, sensing the signal(s) that switches the enzyme of life in a channel able to precipitate cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimers of mitochondrial ATP synthase form the permeability transition pore.

Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (B...

متن کامل

Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease

F1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer's disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear. Here, we observe selective l...

متن کامل

Oligomycin sensitivity-conferring protein (OSCP) of mitochondrial ATP synthase. The carboxyl-terminal region of OSCP is essential for the reconstitution of oligomycin-sensitive H(+)-ATPase.

Studies to establish the structure/function relationships of oligomycin sensitivity-conferring protein (OSCP) of mitochondrial ATP synthase were carried out using genetic engineering and biochemical approaches. A full-length cDNA clone encoding OSCP was isolated from a bovine heart cDNA library, and the mature form of OSCP was expressed in Escherichia coli using plasmid expression vector pKP150...

متن کامل

Ethanol-elicited alterations in the oligomycin sensitivity and structural stability of the mitochondrial F0 . F1 ATPase.

Liver mitochondria from rats fed ethanol chronically demonstrated a 35% decrease in mitochondrial ATPase activity. Moreover, the ATPase activity was inhibited only 61% by addition of oligomycin. Treatment of mitochondria from ethanol-fed rats with the detergent, Lubrol-WX, caused the release of 36% of the F1 from the resulting inner membrane particles. In comparison, only 5% of the F1 was disso...

متن کامل

Single copies of subunits d, oligomycin-sensitivity conferring protein, and b are present in the Saccharomyces cerevisiae mitochondrial ATP synthase.

In the mitochondrial ATP synthase (mtATPase) of the yeast Saccharomyces cerevisiae, the stoichiometry of subunits d, oligomycin-sensitivity conferring protein (OSCP), and b is poorly defined. We have investigated the stoichiometry of these subunits by the application of hexahistidine affinity purification technology. We have previously demonstrated that intact mtATPase complexes incorporating a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014